1,900,137 research outputs found

    Holobiont Evolution: Mathematical Model with Vertical vs. Horizontal Microbiome Transmission

    Get PDF
    A holobiont is a composite organism consisting of a host together with its microbiome, such as a coral with its zooxanthellae. To explain the often intimate integration between hosts and their microbiomes, some investigators contend that selection operates on holobionts as a unit and view the microbiome’s genes as extending the host’s nuclear genome to jointly comprise a hologenome. Because vertical transmission of microbiomes is uncommon, other investigators contend that holobiont selection cannot be effective because a holobiont’s microbiome is an acquired condition rather than an inherited trait. This disagreement invites a simple mathematical model to see how holobiont selection might operate and to assess its plausibility as an evolutionary force. This paper presents two variants of such a model. In one variant, juvenile hosts obtain microbiomes from their parents (vertical transmission). In the other variant, microbiomes of juvenile hosts are assembled from source pools containing the combined microbiomes of all parents (horizontal transmission). According to both variants, holobiont selection indeed causes evolutionary change in holobiont traits. Therefore, holobiont selection is plausibly an effective evolutionary force with either mode of microbiome transmission. The modeling employs two distinct concepts of inheritance, depending on the mode of microbiome transmission: collective inheritance whereby juveniles inherit a sample of the collected genomes from all parents, as contrasted with lineal inheritance whereby juveniles inherit the genomes from only their own parents. A distinction between collective and lineal inheritance also features in theories of multilevel selection

    Mathematical Model of Vaccine Noncompliance

    Get PDF
    Vaccine scares can prevent individuals from complying with a vaccination program. When compliance is high, the critical vaccination proportion is close to being met, and herd immunity occurs, bringing the disease incidence to extremely low levels. Thus, the risk to vaccinate may seem greater than the risk of contracting the disease, inciting vaccine noncompliance. A previous behavior-incidence ordinary differential equation model shows both social learning and feedback contributing to changes in vaccinating behavior, where social learning is the perceived risk of vaccinating and feedback repre- sents new cases of the disease. In our study, we compared several candidate models to more simply illustrate both vaccination coverage and incidence through social learn- ing and feedback. The behavior model uses logistic growth and exponential decay to describe the social learning aspect as well as different functional forms of the disease prevalence to represent feedback. Each candidate model was tested by fitting it to data from the pertussis vaccine scare in England and Wales in the 1970s. Our most parsimonious model shows a superior fit to the vaccine coverage curve during the scare

    Thermal Pollution Mathematical Model

    Get PDF
    The free-surface model presented is for tidal estuaries and coastal regions where ambient tidal forces play an important role in the dispersal of heated water. The model is time dependent, three dimensional, and can handle irregular bottom topography. The vertical stretching coordinate is adopted for better treatment of kinematic condition at the water surface. The results include surface elevation, velocity, and temperature. The model was verified at the Anclote Anchorage site of Florida Power Company. Two data bases at four tidal stages for winter and summer conditions were used to verify the model. Differences between measured and predicted temperatures are on an average of less than 1 C

    Thermal Pollution Mathematical Model

    Get PDF
    A one dimensional model for studying the thermal dynamics of cooling lakes was developed and verified. The model is essentially a set of partial differential equations which are solved by finite difference methods. The model includes the effects of variation of area with depth, surface heating due to solar radiation absorbed at the upper layer, and internal heating due to the transmission of solar radiation to the sub-surface layers. The exchange of mechanical energy between the lake and the atmosphere is included through the coupling of thermal diffusivity and wind speed. The effects of discharge and intake by power plants are also included. The numerical model was calibrated by applying it to Cayuga Lake. The model was then verified through a long term simulation using Lake Keowee data base. The comparison between measured and predicted vertical temperature profiles for the nine years is good. The physical limnology of Lake Keowee is presented through a set of graphical representations of the measured data base

    Mathematical model for calculating enrichment efficiency

    Get PDF
    corecore